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ABSTRACT
Recommender systems apply knowledge discovery techniques
to the problem of making personalized recommendations for
information, products or services during a live interaction.
These systems, especially the k-nearest neighbor collabora-
tive �ltering based ones, are achieving widespread success on
the Web. The tremendous growth in the amount of avail-
able information and the number of visitors to Web sites in
recent years poses some key challenges for recommender sys-
tems. These are: producing high quality recommendations,
performing many recommendations per second for millions
of users and items and achieving high coverage in the face of
data sparsity. In traditional collaborative �ltering systems
the amount of work increases with the number of partici-
pants in the system. New recommender system technologies
are needed that can quickly produce high quality recom-
mendations, even for very large-scale problems. To address
these issues we have explored item-based collaborative �l-
tering techniques. Item-based techniques �rst analyze the
user-item matrix to identify relationships between di�erent
items, and then use these relationships to indirectly compute
recommendations for users.
In this paper we analyze di�erent item-based recommen-

dation generation algorithms. We look into di�erent tech-
niques for computing item-item similarities (e.g., item-item
correlation vs. cosine similarities between item vectors) and
di�erent techniques for obtaining recommendations from them
(e.g., weighted sum vs. regression model). Finally, we ex-
perimentally evaluate our results and compare them to the
basic k-nearest neighbor approach. Our experiments sug-
gest that item-based algorithms provide dramatically better
performance than user-based algorithms, while at the same
time providing better quality than the best available user-
based algorithms.

1. INTRODUCTION
The amount of information in the world is increasing far

more quickly than our ability to process it. All of us have
known the feeling of being overwhelmed by the number of
new books, journal articles, and conference proceedings com-
ing out each year. Technology has dramatically reduced the
barriers to publishing and distributing information. Now
it is time to create the technologies that can help us sift
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through all the available information to �nd that which is
most valuable to us.
One of the most promising such technologies is collabora-

tive �ltering [19, 27, 14, 16]. Collaborative �ltering works by
building a database of preferences for items by users. A new
user, Neo, is matched against the database to discover neigh-
bors, which are other users who have historically had similar
taste to Neo. Items that the neighbors like are then recom-
mended to Neo, as he will probably also like them. Collab-
orative �ltering has been very successful in both research
and practice, and in both information �ltering applications
and E-commerce applications. However, there remain im-
portant research questions in overcoming two fundamental
challenges for collaborative �ltering recommender systems.
The �rst challenge is to improve the scalability of the col-

laborative �ltering algorithms. These algorithms are able to
search tens of thousands of potential neighbors in real-time,
but the demands of modern systems are to search tens of
millions of potential neighbors. Further, existing algorithms
have performance problems with individual users for whom
the site has large amounts of information. For instance,
if a site is using browsing patterns as indications of con-
tent preference, it may have thousands of data points for its
most frequent visitors. These \long user rows" slow down
the number of neighbors that can be searched per second,
further reducing scalability.
The second challenge is to improve the quality of the rec-

ommendations for the users. Users need recommendations
they can trust to help them �nd items they will like. Users
will "vote with their feet" by refusing to use recommender
systems that are not consistently accurate for them.
In some ways these two challenges are in conict, since the

less time an algorithm spends searching for neighbors, the
more scalable it will be, and the worse its quality. For this
reason, it is important to treat the two challenges simul-
taneously so the solutions discovered are both useful and
practical.
In this paper, we address these issues of recommender

systems by applying a di�erent approach{item-based algo-
rithm. The bottleneck in conventional collaborative �lter-
ing algorithms is the search for neighbors among a large
user population of potential neighbors [12]. Item-based al-
gorithms avoid this bottleneck by exploring the relationships
between items �rst, rather than the relationships between
users. Recommendations for users are computed by �nding
items that are similar to other items the user has liked. Be-
cause the relationships between items are relatively static,
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item-based algorithms may be able to provide the same qual-
ity as the user-based algorithms with less online computa-
tion.

1.1 Related Work
In this section we briey present some of the research lit-

erature related to collaborative �ltering, recommender sys-
tems, data mining and personalization.
Tapestry [10] is one of the earliest implementations of col-

laborative �ltering-based recommender systems. This sys-
tem relied on the explicit opinions of people from a close-knit
community, such as an oÆce workgroup. However, recom-
mender system for large communities cannot depend on each
person knowing the others. Later, several ratings-based au-
tomated recommender systems were developed. The Grou-
pLens research system [19, 16] provides a pseudonymous
collaborative �ltering solution for Usenet news and movies.
Ringo [27] and Video Recommender [14] are email and web-
based systems that generate recommendations on music and
movies, respectively. A special issue of Communications of
the ACM [20] presents a number of di�erent recommender
systems.
Other technologies have also been applied to recommender

systems, including Bayesian networks, clustering, and Hort-
ing. Bayesian networks create a model based on a training
set with a decision tree at each node and edges represent-
ing user information. The model can be built o�-line over a
matter of hours or days. The resulting model is very small,
very fast, and essentially as accurate as nearest neighbor
methods [6]. Bayesian networks may prove practical for en-
vironments in which knowledge of user preferences changes
slowly with respect to the time needed to build the model
but are not suitable for environments in which user prefer-
ence models must be updated rapidly or frequently.
Clustering techniques work by identifying groups of users

who appear to have similar preferences. Once the clusters
are created, predictions for an individual can be made by av-
eraging the opinions of the other users in that cluster. Some
clustering techniques represent each user with partial par-
ticipation in several clusters. The prediction is then an aver-
age across the clusters, weighted by degree of participation.
Clustering techniques usually produce less-personal recom-
mendations than other methods, and in some cases, the clus-
ters have worse accuracy than nearest neighbor algorithms
[6]. Once the clustering is complete, however, performance
can be very good, since the size of the group that must be
analyzed is much smaller. Clustering techniques can also
be applied as a "�rst step" for shrinking the candidate set
in a nearest neighbor algorithm or for distributing nearest-
neighbor computation across several recommender engines.
While dividing the population into clusters may hurt the
accuracy or recommendations to users near the fringes of
their assigned cluster, pre-clustering may be a worthwhile
trade-o� between accuracy and throughput.

Horting is a graph-based technique in which nodes are
users, and edges between nodes indicate degree of similarity
between two users [1]. Predictions are produced by walking
the graph to nearby nodes and combining the opinions of
the nearby users. Horting di�ers from nearest neighbor as
the graph may be walked through other users who have not
rated the item in question, thus exploring transitive rela-
tionships that nearest neighbor algorithms do not consider.

In one study using synthetic data, Horting produced better
predictions than a nearest neighbor algorithm [1].
Schafer et al., [26] present a detailed taxonomy and exam-

ples of recommender systems used in E-commerce and how
they can provide one-to-one personalization and at the same
can capture customer loyalty. Although these systems have
been successful in the past, their widespread use has exposed
some of their limitations such as the problems of sparsity in
the data set, problems associated with high dimensionality
and so on. Sparsity problem in recommender system has
been addressed in [23, 11]. The problems associated with
high dimensionality in recommender systems have been dis-
cussed in [4], and application of dimensionality reduction
techniques to address these issues has been investigated in
[24].
Our work explores the extent to which item-based recom-

menders, a new class of recommender algorithms, are able
to solve these problems.

1.2 Contributions
This paper has three primary research contributions:

1. Analysis of the item-based prediction algorithms and
identi�cation of di�erent ways to implement its sub-
tasks.

2. Formulation of a precomputed model of item similarity
to increase the online scalability of item-based recom-
mendations.

3. An experimental comparison of the quality of several
di�erent item-based algorithms to the classic user-based
(nearest neighbor) algorithms.

1.3 Organization
The rest of the paper is organized as follows. The next

section provides a brief background in collaborative �lter-
ing algorithms. We �rst formally describe the collaborative
�ltering process and then discuss its two variants memory-
based and model-based approaches. We then present some
challenges associated with the memory-based approach. In
section 3, we present the item-based approach and describe
di�erent sub-tasks of the algorithm in detail. Section 4 de-
scribes our experimental work. It provides details of our
data sets, evaluation metrics, methodology and results of
di�erent experiments and discussion of the results. The �-
nal section provides some concluding remarks and directions
for future research.

2. COLLABORATIVE FILTERING BASED
RECOMMENDER SYSTEMS

Recommender systems systems apply data analysis tech-
niques to the problem of helping users �nd the items they
would like to purchase at E-Commerce sites by producing
a predicted likeliness score or a list of top{N recommended
items for a given user. Item recommendations can be made
using di�erent methods. Recommendations can be based
on demographics of the users, overall top selling items, or
past buying habit of users as a predictor of future items.
Collaborative Filtering (CF) [19, 27] is the most success-
ful recommendation technique to date. The basic idea of
CF-based algorithms is to provide item recommendations
or predictions based on the opinions of other like-minded
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users. The opinions of users can be obtained explicitly from
the users or by using some implicit measures.

2.0.1 Overview of the Collaborative Filtering Pro-
cess

The goal of a collaborative �ltering algorithm is to sug-
gest new items or to predict the utility of a certain item for
a particular user based on the user's previous likings and
the opinions of other like-minded users. In a typical CF sce-
nario, there is a list of m users U = fu1; u2; : : : ; umg and a
list of n items I = fi1; i2; : : : ; ing. Each user ui has a list
of items Iui , which the user has expressed his/her opinions
about. Opinions can be explicitly given by the user as a rat-
ing score, generally within a certain numerical scale, or can
be implicitly derived from purchase records, by analyzing
timing logs, by mining web hyperlinks and so on [28, 16].
Note that Iui � I and it is possible for Iui to be a null-set.
There exists a distinguished user ua 2 U called the active
user for whom the task of a collaborative �ltering algorithm
is to �nd an item likeliness that can be of two forms.

� Prediction is a numerical value, Pa;j , expressing the
predicted likeliness of item ij 62 Iua for the active user
ua. This predicted value is within the same scale (e.g.,
from 1 to 5) as the opinion values provided by ua.

� Recommendation is a list of N items, Ir � I, that
the active user will like the most. Note that the recom-
mended list must be on items not already purchased by
the active user, i.e., Ir \ Iua = �. This interface of CF
algorithms is also known as Top-N recommendation.

Figure 1 shows the schematic diagram of the collaborative
�ltering process. CF algorithms represent the entire m� n

user-item data as a ratings matrix, A. Each entry ai;j in A
represents the preference score (ratings) of the ith user on
the jth item. Each individual ratings is within a numerical
scale and it can as well be 0 indicating that the user has
not yet rated that item. Researchers have devised a num-
ber of collaborative �ltering algorithms that can be divided
into two main categories|Memory-based (user-based) and
Model-based (item-based) algorithms [6]. In this section we
provide a detailed analysis of CF-based recommender sys-
tem algorithms.

Memory-based Collaborative Filtering Algorithms.
Memory-based algorithms utilize the entire user-item data-
base to generate a prediction. These systems employ sta-
tistical techniques to �nd a set of users, known as neigh-
bors, that have a history of agreeing with the target user
(i.e., they either rate di�erent items similarly or they tend
to buy similar set of items). Once a neighborhood of users
is formed, these systems use di�erent algorithms to com-
bine the preferences of neighbors to produce a prediction or
top-N recommendation for the active user. The techniques,
also known as nearest-neighbor or user-based collaborative
�ltering, are more popular and widely used in practice.

Model-based Collaborative Filtering Algorithms. Mo-
del-based collaborative �ltering algorithms provide item rec-
ommendation by �rst developing a model of user ratings. Al-
gorithms in this category take a probabilistic approach and
envision the collaborative �ltering process as computing the
expected value of a user prediction, given his/her ratings

on other items. The model building process is performed
by di�erent machine learning algorithms such as Bayesian
network, clustering, and rule-based approaches. The
Bayesian network model [6] formulates a probabilistic model
for collaborative �ltering problem. Clustering model treats
collaborative �ltering as a classi�cation problem [2, 6, 29]
and works by clustering similar users in same class and esti-
mating the probability that a particular user is in a partic-
ular class C, and from there computes the conditional prob-
ability of ratings. The rule-based approach applies associ-
ation rule discovery algorithms to �nd association between
co-purchased items and then generates item recommenda-
tion based on the strength of the association between items
[25].

2.0.2 Challenges of User-based Collaborative Filter-
ing Algorithms

User-based collaborative �ltering systems have been very
successful in past, but their widespread use has revealed
some potential challenges such as:

� Sparsity. In practice, many commercial recommender
systems are used to evaluate large item sets (e.g., Ama-
zon.com recommends books and CDnow.com recom-
mends music albums). In these systems, even active
users may have purchased well under 1% of the items
(1% of 2 million books is 20; 000 books). Accordingly,
a recommender system based on nearest neighbor al-
gorithms may be unable to make any item recommen-
dations for a particular user. As a result the accuracy
of recommendations may be poor.

� Scalability. Nearest neighbor algorithms require com-
putation that grows with both the number of users
and the number of items. With millions of users and
items, a typical web-based recommender system run-
ning existing algorithms will su�er serious scalability
problems.

The weakness of nearest neighbor algorithm for large,
sparse databases led us to explore alternative recommender
system algorithms. Our �rst approach attempted to bridge
the sparsity by incorporating semi-intelligent �ltering agents
into the system [23, 11]. These agents evaluated and rated
each item using syntactic features. By providing a dense rat-
ings set, they helped alleviate coverage and improved qual-
ity. The �ltering agent solution, however, did not address
the fundamental problem of poor relationships among like-
minded but sparse-rating users. To explore that we took
an algorithmic approach and used Latent Semantic Index-
ing (LSI) to capture the similarity between users and items
in a reduced dimensional space [24, 25]. In this paper we
look into another technique, the model-based approach, in
addressing these challenges, especially the scalability chal-
lenge. The main idea here is to analyze the user-item repre-
sentation matrix to identify relations between di�erent items
and then to use these relations to compute the prediction
score for a given user-item pair. The intuition behind this
approach is that a user would be interested in purchasing
items that are similar to the items the user liked earlier
and would tend to avoid items that are similar to the items
the user didn't like earlier. These techniques don't require
to identify the neighborhood of similar users when a rec-
ommendation is requested; as a result they tend to pro-
duce much faster recommendations. A number of di�erent
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Figure 1: The Collaborative Filtering Process.

schemes have been proposed to compute the association be-
tween items ranging from probabilistic approach [6] to more
traditional item-item correlations [15, 13]. We present a de-
tailed analysis of our approach in the next section.

3. ITEM-BASED COLLABORATIVE FILT-
ERING ALGORITHM

In this section we study a class of item-based recommen-
dation algorithms for producing predictions to users. Unlike
the user-based collaborative �ltering algorithm discussed in
Section 2, the item-based approach looks into the set of
items the target user has rated and computes how simi-
lar they are to the target item i and then selects k most
similar items fi1; i2; : : : ; ikg. At the same time their cor-
responding similarities fsi1; si2; : : : ; sikg are also computed.
Once the most similar items are found, the prediction is
then computed by taking a weighted average of the target
user's ratings on these similar items. We describe these two
aspects, namely, the similarity computation and the predic-
tion generation in details here.

3.1 Item Similarity Computation
One critical step in the item-based collaborative �ltering

algorithm is to compute the similarity between items and
then to select the most similar items. The basic idea in
similarity computation between two items i and j is to �rst
isolate the users who have rated both of these items and then
to apply a similarity computation technique to determine
the similarity si;j . Figure 2 illustrates this process; here
the matrix rows represent users and the columns represent
items.
There are a number of di�erent ways to compute the sim-

ilarity between items. Here we present three such methods.
These are cosine-based similarity, correlation-based similar-
ity and adjusted-cosine similarity.

3.1.1 Cosine-based Similarity
In this case, two items are thought of as two vectors in

the m dimensional user-space. The similarity between them
is measured by computing the cosine of the angle between
these two vectors. Formally, in the m � n ratings matrix
in Figure 2, similarity between items i and j, denoted by

sim(i; j) is given by

sim(i; j) = cos(~i;~j) =
~i �~j

k~ik2 � k~jk2

where \�" denotes the dot-product of the two vectors.

3.1.2 Correlation-based Similarity
In this case, similarity between two items i and j is mea-

sured by computing the Pearson-r correlation corri;j . To
make the correlation computation accurate we must �rst
isolate the co-rated cases (i.e., cases where the users rated
both i and j) as shown in Figure 2. Let the set of users who
both rated i and j are denoted by U then the correlation
similarity is given by

sim(i; j) =

P
u2U (Ru;i � �Ri)(Ru;j � �Rj)qP

u2U(Ru;i � �Ri)2
qP

u2U (Ru;j � �Rj)2
:

Here Ru;i denotes the rating of user u on item i, �Ri is the
average rating of the i-th item.

3.1.3 Adjusted Cosine Similarity
One fundamental di�erence between the similarity com-

putation in user-based CF and item-based CF is that in case
of user-based CF the similarity is computed along the rows
of the matrix but in case of the item-based CF the simi-
larity is computed along the columns, i.e., each pair in the
co-rated set corresponds to a di�erent user (Figure 2). Com-
puting similarity using basic cosine measure in item-based
case has one important drawback|the di�erences in rat-
ing scale between di�erent users are not taken into account.
The adjusted cosine similarity o�sets this drawback by sub-
tracting the corresponding user average from each co-rated
pair. Formally, the similarity between items i and j using
this scheme is given by

sim(i; j) =

P
u2U(Ru;i � �Ru)(Ru;j � �Ru)qP

u2U(Ru;i � �Ru)2
qP

u2U (Ru;j � �Ru)2
:

Here �Ru is the average of the u-th user's ratings.
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Figure 2: Isolation of the co-rated items and similarity computation

3.2 Prediction Computation
The most important step in a collaborative �ltering sys-

tem is to generate the output interface in terms of prediction.
Once we isolate the set of most similar items based on the
similarity measures, the next step is to look into the tar-
get users ratings and use a technique to obtain predictions.
Here we consider two such techniques.

3.2.1 Weighted Sum
As the name implies, this method computes the prediction

on an item i for a user u by computing the sum of the ratings
given by the user on the items similar to i. Each ratings is
weighted by the corresponding similarity si;j between items
i and j. Formally, using the notion shown in Figure 3 we
can denote the prediction Pu;i as

Pu;i =

P
all similar items, N

(si;N � Ru;N)P
all similar items, N

(jsi;N j)

Basically, this approach tries to capture how the active
user rates the similar items. The weighted sum is scaled by
the sum of the similarity terms to make sure the prediction
is within the prede�ned range.

3.2.2 Regression
This approach is similar to the weighted sum method but

instead of directly using the ratings of similar items it uses
an approximation of the ratings based on regression model.
In practice, the similarities computed using cosine or cor-
relation measures may be misleading in the sense that two
rating vectors may be distant (in Euclidean sense) yet may
have very high similarity. In that case using the raw ratings
of the \so-called" similar item may result in poor prediction.
The basic idea is to use the same formula as the weighted
sum technique, but instead of using the similar item N 's
\raw" ratings values Ru;N 's, this model uses their approx-

imated values R
0

u;N based on a linear regression model. If
we denote the respective vectors of the target item i and the
similar item N by Ri and RN the linear regression model
can be expressed as

�R
0

N = � �Ri + � + �

The regression model parameters � and � are determined
by going over both of the rating vectors. � is the error of
the regression model.

3.3 Performance Implications
The largest E-Commerce sites operate at a scale that

stresses the direct implementation of collaborative �ltering.
In neighborhood-based CF systems, the neighborhood for-
mation process, especially the user-user similarity computa-
tion step turns out to be the performance bottleneck, which
in turn can make the whole process unsuitable for real-time
recommendation generation. One way of ensuring high scal-
ability is to use a model-based approach. Model-based sys-
tems have the potential to contribute to recommender sys-
tems to operate at a high scale. The main idea here to iso-
late the neighborhood generation and prediction generation
steps.
In this paper, we present a model-based approach to pre-

compute item-item similarity scores. The similarity compu-
tation scheme is still correlation-based but the computation
is performed on the item space. In a typical E-Commerce
scenario, we usually have a set of item that is static com-
pared to the number of users that changes most often. The
static nature of items leads us to the idea of precomput-
ing the item similarities. One possible way of precomputing
the item similarities is to compute all-to-all similarity and
then performing a quick table look-up to retrieve the re-
quired similarity values. This method, although saves time,
requires an O(n2) space for n items.
The fact that we only need a small fraction of similar items

to compute predictions leads us to an alternate model-based
scheme. In this scheme, we retain only a small number of
similar items. For each item j we compute the k most sim-
ilar items, where k � n and record these item numbers
and their similarities with j. We term k as the model size.
Based on this model building step, our prediction genera-
tion algorithm works as follows. For generating predictions
for a user u on item i, our algorithm �rst retrieves the pre-
computed k most similar items corresponding to the target
item i. Then it looks how many of those k items were pur-
chased by the user u, based on this intersection then the
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prediction is computed using basic item-based collaborative
�ltering algorithm.
We observe a quality-performance trade-o� here: to en-

sure good quality we must have a large model size, which
leads to the performance problems discussed above. In one
extreme, we can have a model size of n, which will ensure the
exact same quality as the original scheme but will have high
space complexity. However, our model building step ensures
that we retain the most similar items. While generating pre-
dictions, these items contribute the most to the prediction
scores. Accordingly, we hypothesize that this model-based
approach will provide reasonably good prediction quality
with even a small model size and hence provide a good per-
formance. We experimentally validate our hypothesis later
in this paper. In particular, we experiment with the model
size by varying the number of similar items to be stored.
Then we perform experiments to compute prediction and
response-time to determine the impact of the model size on
quality and performance of the whole system.

4. EXPERIMENTAL EVALUATION

4.1 Data set
We used experimental data from our research website to

evaluate di�erent variants of item-based recommendation al-
gorithms.

Movie data. We used data from our MovieLens recom-
mender system. MovieLens is a web-based research recom-
mender system that debuted in Fall 1997. Each week hun-
dreds of users visit MovieLens to rate and receive recom-
mendations for movies. The site now has over 43000 users
who have expressed opinions on 3500+ di�erent movies. We
randomly selected enough users to obtain 100; 000 ratings
from the database (we only considered users that had rated
20 or more movies). We divided the database into a train-
ing set and a test set. For this purpose, we introduced a
variable that determines what percentage of data is used as
training and test sets; we call this variable x. A value of
x = 0:8 would indicate 80% of the data was used as train-
ing set and 20% of the data was used as test set. The data
set was converted into a user-item matrix A that had 943

rows (i.e., 943 users) and 1682 columns (i.e., 1682 movies
that were rated by at least one of the users). For our ex-
periments, we also take another factor into consideration,
sparsity level of data sets. For the data matrix R This is

de�ned as 1 � nonzero entries
total entries

. The sparsity level of the

Movie data set is, therefore, 1 � 100;000

943�1682
, which is 0:9369.

Throughout the paper we term this data set as ML.

4.2 Evaluation Metrics
Recommender systems research has used several types of

measures for evaluating the quality of a recommender sys-
tem. They can be mainly categorized into two classes:

� Statistical accuracy metrics evaluate the accuracy of a
system by comparing the numerical recommendation
scores against the actual user ratings for the user-item
pairs in the test dataset. Mean Absolute Error (MAE)
between ratings and predictions is a widely used met-
ric. MAE is a measure of the deviation of recommen-
dations from their true user-speci�ed values. For each
ratings-prediction pair < pi; qi > this metric treats the
absolute error between them, i.e., jpi�qij equally. The
MAE is computed by �rst summing these absolute er-
rors of the N corresponding ratings-prediction pairs
and then computing the average. Formally,

MAE =

PN

i=1 jpi � qij

N

The lower the MAE, the more accurately the recom-
mendation engine predicts user ratings. Root Mean
Squared Error (RMSE), and Correlation are also used
as statistical accuracy metric.

� Decision support accuracy metrics evaluate how e�ec-
tive a prediction engine is at helping a user select high-
quality items from the set of all items. These metrics
assume the prediction process as a binary operation-
either items are predicted (good) or not (bad). With
this observation, whether a item has a prediction score
of 1:5 or 2:5 on a �ve-point scale is irrelevant if the user
only chooses to consider predictions of 4 or higher. The
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most commonly used decision support accuracy met-
rics are reversal rate, weighted errors and ROC sensi-
tivity [23].

We used MAE as our choice of evaluation metric to re-
port prediction experiments because it is most commonly
used and easiest to interpret directly. In our previous ex-
periments [23] we have seen that MAE and ROC provide the
same ordering of di�erent experimental schemes in terms of
prediction quality.

4.2.1 Experimental Procedure

Experimental steps. We started our experiments by �rst
dividing the data set into a training and a test portion. Be-
fore starting full experimental evaluation of di�erent algo-
rithms we determined the sensitivity of di�erent parameters
to di�erent algorithms and from the sensitivity plots we �xed
the optimum values of these parameters and used them for
the rest of the experiments. To determine the parameter
sensitivity, we work only with the training data and further
subdivide it into a training and test portion and carried on
our experiments on them. For conducted a 10-fold cross val-
idation of our experiments by randomly choosing di�erent
training and test sets each time and taking the average of
the MAE values.

Benchmark user-based system. To compare the perfor-
mance of item-based prediction we also entered the training
ratings set into a collaborative �ltering recommendation en-
gine that employs the Pearson nearest neighbor algorithm
(user-user). For this purpose we implemented a exible pre-
diction engine that implements user-based CF algorithms.
We tuned the algorithm to use the best published Pearson
nearest neighbor algorithm and con�gured it to deliver the
highest quality prediction without concern for performance
(i.e., it considered every possible neighbor to form optimal
neighborhoods).

Experimental platform. All our experiments were imple-
mented using C and compiled using optimization ag �06.
We ran all our experiments on a linux based PC with Intel
Pentium III processor having a speed of 600 MHz and 2GB
of RAM.

4.3 Experimental Results
In this section we present our experimental results of ap-

plying item-based collaborative �ltering techniques for gen-
erating predictions. Our results are mainly divided into two
parts|quality results and performance results. In assess-
ing the quality of recommendations, we �rst determined the
sensitivity of some parameters before running the main ex-
periment. These parameters include the neighborhood size,
the value of the training/test ratio x, and e�ects of di�erent
similarity measures. For determining the sensitivity of var-
ious parameters, we focused only on the training data set
and further divided it into a training and a test portion and
used them to learn the parameters.

4.3.1 Effect of Similarity Algorithms
We implemented three di�erent similarity algorithms ba-

sic cosine, adjusted cosine and correlation as described in
Section 3.1 and tested them on our data sets. For each simi-
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Figure 4: Impact of the similarity computation mea-

sure on item-based collaborative �ltering algorithm.

larity algorithms, we implemented the algorithm to compute
the neighborhood and used weighted sum algorithm to gen-
erate the prediction. We ran these experiments on our train-
ing data and used test set to compute Mean Absolute Error
(MAE). Figure 4 shows the experimental results. It can be
observed from the results that o�setting the user-average for
cosine similarity computation has a clear advantage, as the
MAE is signi�cantly lower in this case. Hence, we select the
adjusted cosine similarity for the rest of our experiments.

4.3.2 Sensitivity of Training/Test Ratio
To determine the sensitivity of density of the data set, we

carried out an experiment where we varied the value of x
from 0:2 to 0:9 in an increment of 0:1. For each of these
training/test ratio values we ran our experiments using the
two prediction generation techniques{basic weighted sum
and regression based approach. Our results are shown in
Figure 5. We observe that the quality of prediction increase
as we increase x. The regression-based approach shows bet-
ter results than the basic scheme for low values of x but
as we increase x the quality tends to fall below the basic
scheme. From the curves, we select x = 0:8 as an optimum
value for our subsequent experiments.

4.3.3 Experiments with neighborhood size
The size of the neighborhood has signi�cant impact on the

prediction quality [12]. To determine the sensitivity of this
parameter, we performed an experiment where we varied
the number of neighbors to be used and computed MAE.
Our results are shown in Figure 5. We can observe that
the size of neighborhood does a�ect the quality of predic-
tion. But the two methods show di�erent types of sensitiv-
ity. The basic item-item algorithm improves as we increase
the neighborhood size from 10 to 30, after that the rate of
increase diminishes and the curve tends to be at. On the
other hand, the regression-based algorithm shows decrease
in prediction quality with increased number of neighbors.
Considering both trends we select 30 as our optimal choice
of neighborhood size.

4.3.4 Quality Experiments
Once we obtain the optimal values of the parameters, we

compare both of our item-based approaches with the bench-
mark user-based algorithm. We present the results in Fig-
ure 6. It can be observed from the charts that the basic
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Figure 5: Sensitivity of the parameter x on the neighborhood size

item-item algorithm out performs the user based algorithm
at all values of x (neighborhood size = 30) and all values of
neighborhood size (x = 0:8). For example, at x = 0:5 user-
user scheme has an MAE of 0:755 and item-item scheme
shows an MAE of 0:749. Similarly at a neighborhood size of
60 user-user and item-item schemes show MAE of 0:732 and
0:726 respectively. The regression-based algorithm, how-
ever, shows interesting behavior. At low values of x and
at low neighborhood size it out performs the other two al-
gorithms, but as the density of the data set is increased
or as we add more neighbors it performs worse, even com-
pared to the user-based algorithm. We also compared our
algorithms against the naive nonpersonalized algorithm de-
scribed in [12].
We draw two conclusions from these results. First, item-

based algorithms provide better quality than the user-based
algorithms at all sparsity levels. Second, regression-based
algorithms perform better with very sparse data set, but as
we add more data the quality goes down. We believe this
happens as the regression model su�ers from data over�tting
at high density levels.

4.3.5 Performance Results
After showing that the item-based algorithm provides bet-

ter quality of prediction than the user-based algorithm, we
focus on the scalability issues. As discussed earlier, item-
based similarity is more static and allows us to precompute
the item neighborhood. This precomputation of the model
has certain performance bene�ts. To make the system even
more scalable we looked into the sensitivity of the model
size and then looked into the impact of model size on the
response time and throughput.

4.4 Sensitivity of the Model Size
To experimentally determine the impact of the model size

on the quality of the prediction, we selectively varied the
number of items to be used for similarity computation from
25 to 200 in an increment of 25. A model size of l means that
we only considered l best similarity values for model build-
ing and later used k of them for the prediction generation
process, where k < l. Using the training data set we pre-
computed the item similarity using di�erent model sizes and
then used only the weighted sum prediction generation tech-
nique to provide the predictions. We then used the test data
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Figure 7: Sensitivity of the model size on item-based

collaborative �ltering algorithm

set to compute MAE and plotted the values. To compare
with the full model size (i.e., model size = no. of items)
we also ran the same test considering all similarity values
and picked best k for prediction generation. We repeated
the entire process for three di�erent x values (training/test
ratios). Figure 7 shows the plots at di�erent x values. It
can be observed from the plots that the MAE values get
better as we increase the model size and the improvements
are drastic at the beginning, but gradually slow down as we
increase the model size. The most important observation
from these plots is the high accuracy that can be achieved
using only a fraction of items. For example, at x = 0:3 the
full item-item scheme provided an MAE of 0:7873, but using
a model size of only 25, we were able to achieve an MAE
value of 0:842. At x = 0:8 these numbers are even more
appealing|for the full item-item we had an MAE of 0:726
but using a model size of only 25 we were able to obtain an
MAE of 0:754, and using a model size of 50 the MAE was
0:738. In other words, at x = 0:8 we were within 96% and
98:3% of the full item-item scheme's accuracy using only
1:9% and 3% of the items, respectively!
This model size sensitivity has important performance im-

plications. It appears from the plots that it is useful to pre-
compute the item similarities using only a fraction of items
and yet possible to obtain good prediction quality.
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Figure 6: Comparison of prediction quality of item-item and user-user collaborative �ltering algorithms. We

compare prediction qualities at x = 0:2; 0:5; 0:8 and 0:9.

4.4.1 Impact of the model size on run-time and through-
put

Given the quality of prediction is reasonably good with
small model size, we focus on the run-time and throughput
of the system. We recorded the time required to generate
predictions for the entire test set and plotted them in a
chart with varying model size. We plotted the run time at
di�erent x values. Figure 8 shows the plot. Note here that
at x = 0:25 the whole system has to make prediction for
25; 000 test cases. From the plot we observe a substantial
di�erence in the run-time between the small model size and
the full item-item prediction case. For x = 0:25 the run-time
is 2:002 seconds for a model size of 200 as opposed to 14:11
for the basic item-item case. This di�erence is even more
prominent with x = 0:8 where a model size of 200 requires
only 1:292 seconds and the basic item-item case requires
36:34 seconds.
These run-time numbers may be misleading as we com-

puted them for di�erent training/test ratios where the work-
load size, i.e., number of predictions to be generated is dif-
ferent (recall that at x = 0:3 our algorithm uses 30; 000
ratings as training data and uses the rest of 70; 000 ratings
as test data to compare predictions generated by the system
to the actual ratings). To make the numbers comparable we
compute the throughput (predictions generated per second)
for the model based and basic item-item schemes. Figure 8
charts these results. We see that for x = 0:3 and at a model
size of 100 the system generates 70; 000 ratings in 1:487 sec-
onds producing a throughput rate of 47; 361 where as the
basic item-item scheme produced a throughput of 4961 only.
At x = 0:8 these two numbers are 21; 505 and 550 respec-
tively.

4.5 Discussion
From the experimental evaluation of the item-item collab-

orative �ltering scheme we make some important observa-
tions. First, the item-item scheme provides better quality
of predictions than the use-user (k-nearest neighbor) scheme.
The improvement in quality is consistent over di�erent neigh-
borhood size and training/test ratio. However, the improve-
ment is not signi�cantly large. The second observation is
that the item neighborhood is fairly static, which can be
potentially pre-computed, which results in very high on-

line performance. Furthermore, due to the model-based ap-
proach, it is possible to retain only a small subset of items
and produce reasonably good prediction quality. Our ex-
perimental results support that claim. Therefore, the item-
item scheme is capable in addressing the two most important
challenges of recommender systems for E-Commerce{quality
of prediction and high performance.

5. CONCLUSION
Recommender systems are a powerful new technology for

extracting additional value for a business from its user data-
bases. These systems help users �nd items they want to buy
from a business. Recommender systems bene�t users by en-
abling them to �nd items they like. Conversely, they help
the business by generating more sales. Recommender sys-
tems are rapidly becoming a crucial tool in E-commerce on
the Web. Recommender systems are being stressed by the
huge volume of user data in existing corporate databases,
and will be stressed even more by the increasing volume
of user data available on the Web. New technologies are
needed that can dramatically improve the scalability of rec-
ommender systems.
In this paper we presented and experimentally evaluated

a new algorithm for CF-based recommender systems. Our
results show that item-based techniques hold the promise of
allowing CF-based algorithms to scale to large data sets and
at the same time produce high-quality recommendations.
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Figure 8: Recommendation time and throughput comparison between model-based scheme and full item-item

scheme. The comparisons are shown at three di�erent x values.
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