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ABSTRACT

Recommendation has achieved successful results in many
applications. However, for supermarkets, since the transac-
tion data is extremely skewed in the sense that a large por-
tion of sales is concentrated in a small number of hot seller
items, collaborative filtering recommenders usually recom-
mend hot sellers while rarely recommend cold sellers. But
recommenders are supposed to provide better campaigns for
cold sellers to increase sales. In this paper, we propose an
alternative “item-triggered” recommendation, which aims at
returning a ranked list of potential customers for a given
cold-seller item. This problem can be formulated as a prob-
lem of rare class learning. We present a Boosting-SVM al-
gorithm to solve the rare class problem and apply our algo-
rithm to a real-world supermarket database. Experimental
results show that our algorithm can improve from a baseline
approach by about twenty-five percent in terms of the area
under the ROC curve (AUC) metric for cold sellers that as
low as 0.7% of customers have ever purchased.
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INTRODUCTION

Recommender systems (RSs) have achieved successful re-
sults in many applications. We can see them work in our
daily lives. A good RS can help increasing sales at on-line
merchants as well as brick-and-mortar retailer stores. Exam-
ples include net news [15], on-line shopping [13], TV pro-
grams [19, 1], etc.. Previous work can be classified into three
categories: content-based filtering (e.g., [3]), collaborative
filtering (CF) (e.g., [15]) and hybrid solutions (e.g, [14]).

In this paper, we address the problem of applying CF rec-
ommender system in a brick-and-mortar supermarket. This
problem is challenging for current RSs in that the transaction
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Figure 1: Sales distribution of items in Ta-Feng retailer store

data is extremely skewed in the sense that a large portion of
sales is concentrated in a small number of items. Figure 1
shows the sales distribution of items sold in a supermarket.
In the figure, items are sorted and re-numbered by the or-
der of their sales figures in a given period of time. The
sales figure here is the amount of the items purchased by
the customers. The plot shows that the sales distribution is
skewed and concentrated on a very small portion of product
items. This is typical to retailer stores and is an example
of “ the 80-20 rule” known in business management. A triv-
ial recommender that always recommends hot sellers to any
customer can achieve pretty accurate prediction of the cus-
tomers’ shopping preference. In fact, it is difficult to improve
from the trivial recommender because it is difficult for a rec-
ommender to identify potential customers for the items in the
tail of the curve. From the point of view of the supermarket
which pays to deploy a RS, it is much more useful for a RS
to recommend thosecold sellersaccurately than recommend
hot sellers accurately.

In this paper, we proposeitem-triggeredrecommendation,
an alternative view of recommendation. Previous RSs are
customer-triggeredin that they return a list of items as
the recommendation for each customer. In contrast, item-
triggered RS will return a potential customers list for each
cold seller. A given proportion of the customers from the
top of the list will then receive the recommendation to buy
that cold seller item. If this can be done accurately, the RS



will help increasing sales of those cold sellers, which are
in need of better campaigns. Previously, Sarwar et al. [16]
proposed an item-based approach to recommendation. Item-
based recommendation is not item-triggered because it is ba-
sically customer-triggered and still aims at returning a list of
items for each customer.

The problem specification of item-triggered recommenda-
tion is, given a cold seller, estimating the probability that a
customer will buy that item given a set of features of that
customer. We can apply a binary classifier that returns a
confidence score of its classification result (i.e., will buy or
will not buy) to solve the problem. Previously, many classi-
fier learning algorithms have been applied to recommenda-
tion (see e.g. [2], [23], [7]). Among many classifiers, we
chose SVM because SVM can handle sparse data better than
other classifiers [20]. Transaction databases in supermarkets
are very sparse in that each customer only purchased a very
small subset of the entire set of available items. Therefore, if
we use transaction data as the features, we will need a clas-
sifier that can handle sparse data. A variation of SVM in
LIBSVM [4] can output the probability of its classification
results [21]. We will use that version of SVM from LIBSVM
to solve our problem. Since we aim at identifying potential
customers for cold sellers, the training data for the SVM will
be veryimbalanced— by definition of the cold seller, only
a very small portion of customers have purchased the item.
As a result, the ratio of positive data (customers who have
purchased the item) and negative data (customers who did
not purchase the item) will be very small. This problem is
known as therare classproblem in machine learning. SVM
alone cannot handle imbalanced training data. We propose a
boosting algorithm to train an ensemble of SVMs to handle
imbalanced data. The idea is to extract a subset of the train-
ing data such that the subset is less imbalanced and has more
incorrectly classified data so that each SVM in the ensemble
is trained using different combination of positive and nega-
tive data. In this way, the combination of the SVM ensemble
can provide a finer classification boundary to separate posi-
tive and negative data.

We will use the AUC metric to measure the quality of the
output list of potential customers by our new RS. See [8] for
its use in RSs and [5] in machine learning. The AUC metric
takes into account both false positives and false negatives
and is suitable to measure the quality of a ranked list. Other
metrics that focus on evaluating individual recommendation,
such as accuracy or absolute deviation, are not appropriate
here because the score will be high if all the customers are
predicted as not going to buy cold sellers.

In our experiments, the SVM ensembles were compared with
sorting customer lists by their shopping frequency. The lat-
ter serves as a baseline for item-triggered recommendation.
The results show that the SVM ensemble outperforms the
baseline one by increasing the AUC of the latter by 25%.

This paper is organized as follows. First, we describe the

background motivation and the problem definition of item-
triggered recommendation. Next, we present the Boosting-
SVM algorithm and experimental results. At last, we discuss
related work and conclusion.

ITEM-TRIGGERED RECOMMENDATION

In 2001, we had a chance of collaboration to develop a per-
sonalized shopping recommender with Ta-Feng, a large re-
tailer store in Taiwan that sells a wide range of merchandise,
from food and grocery to office supplies and furniture. After
surveying a variety of technologies, we agreed a specifica-
tion of the recommender. The specification requires that for
each customer, the recommender should produce a ranked
list of items in the order of the customer’s preference, given
his/her historical shopping records.

The transaction data set from Ta-Feng contains the transac-
tions collected in a time span of four months, from Novem-
ber, 2000 to February, 20011. Each record consists of four
attributes: the shopping date, customer ID, product ID, and
the amount of purchase. Shopping records with the same
customer ID and the same shopping date are considered as a
transaction. There are 119,578 transactions and 32,266 dis-
tinguishable customers in this data set. Ta-Feng adopts a
common commodity classification standard that consists of
a three-level product taxonomy. Products are classified into
201 product classes and 2012 sub-classes.

Figure 1 shows the sales distribution plot of the items sold
at Ta-Feng according to the transaction data set described
above. The plot shows that the sales figure is skewed and
concentrated on a very small portion of product items, which
is typical for supermarkets. The skewness of the data makes
it easy to accurately recommend a hot seller item but difficult
to identify potential customers for the items in the tail of the
curve, that is, the cold sellers.

Our previous work shows that a probabilistic graphical
model can be effective in handling skewed and sparse
data [9]. By casting CF algorithms in a probabilistic frame-
work, we derived HyPAM (Hybrid Poisson Aspect Mod-
eling), a novel probabilistic graphical model for personal-
ized shopping recommendation. Experimental results show
that HyPAM outperforms GroupLens [15] and the IBM
method [11] by generating much more accurate predictions
of what items a customer will actually purchase in the unseen
test data. HyPAM also outperforms the “default” method —
the trivial recommender that always recommends the best
sellers to any customer. However, when we compared
the items recommended by HyPAM and the trivial recom-
mender, we found that the difference is not that obvious.
HyPAM can tailor to a customer’s need by recommending
some cold sellers but most of the times hot sellers are at the
top of the recommendation. In fact, if we evaluate a RS’s
performance by comparing its recommendation with the un-

1The data set is available for download at the following URL:
http://chunnan.iis.sinica.edu.tw/hypam/HyPAM.html.



seen data in the transaction data set, given the skewness of
the data, a perfect RS must recommend cold sellers less
often. This implies that our original problem formulation,
the “customer-triggered” recommendation, and the evalua-
tion metrics, will not lead to large sales increasing for cold
sellers, but cold sellers provide a wide-open opportunity of
large sales increasing.

This is why we propose an “item-triggered” recommenda-
tion approach. Rather than recommending a list of items
to each customer, the item-triggered recommender outputs
a customer list ordered by the probability that the customers
are willing to buy a given item. An accurate predictor of
customers’ shopping preference may improving customers’
shopping experience and indirectly increase the sales, but in-
creasing sales of cold sellers can contribute directly and jus-
tify the investment of deploying a RS by the supermarkets.
Item-triggered RSs can be complementary with customer-
triggered ones by inserting cold sellers to the predicted shop-
ping list of the potential customer. In this way, we can
address not only the needs of the customers but also their
unique needs that are shared with a very small number of
other customers.

BOOSTING SVM

As we described in the introduction section, we can formu-
late the problem of item-triggered recommendation as a clas-
sifier learning problem, but we will need to face the “rare
class” problem. This section presents our preliminary solu-
tion to item-triggered recommendation. Our goal is to de-
velop a classifier for each cold seller item to accurately clas-
sify whether a customer will or will not buy the item with a
probability. Ordered by the probability, the customers con-
stitute a ranked list in the order of the likelihood that they
will buy the item.

The training data of the classifier is the data of customers
that we already know whether they bought or did not buy the
given item. A customer who bought the item will be treated
as a positive example and negative otherwise. Clearly, the
training data will be very imbalanced because for cold sell-
ers, there will be many negative examples and very few pos-
itive examples. In our experiment, the ratio of positive and
negative examples is about as low as 2%. There are really
“cold” sellers in our transaction data with an extremely low
ratio. If the ratio for an item is lower than 0.7%, that is equiv-
alent to having less than 100 customers in four months, then
we will not consider the item here because it is too difficult
to derive anything from the transaction database for this item
and the item might not worth being recommended to cus-
tomers at all.

We will evaluate the trained classifier with a test data set of
customers. This test data set is disjoint with the training data
set. Given a threshold of probability, we can divide the out-
put customer list by the classifier into two sets: one set con-
tains customers with the probability to buy the item higher
than the threshold, and the other set contains customers with

the probability lower than the threshold. Customers in the
former set is predicted positive (i.e., will purchase the item)
and the latter set is negative (i.e., will not buy the item). Then
we can compare the positive and negative sets with the real
class label in the test data set and calculate recall and pre-
cision. By adjusting the threshold, the classifier will yield
different recall and precision and we can apply the AUC met-
ric [5] to evaluate the quality of the predicted customer list.
A classifier will have a high AUC score if those customers
who actually buy the item are ranked at the top of the list.
A perfect classifier will have AUC score equal to one while
random guess will yield 0.5 AUC score. The baseline for
our performance evaluation is shopping frequency. For any
item, if a customer visits and shops at the supermarket more
often, then the customer is predicted as more likely to buy
the item. This baseline strategy can yield a better AUC score
than random guess.

We have tried a standard SVM as the classifier, since SVM
can handle sparse and high dimensional data better [20].
However, we found that the resulting recall is quite low due
to the skewed transaction data. In many cases, the SVM sim-
ply predicts that nobody will buy the given item. This yields
a very low error rate but clearly is not desirable. Instead, we
chose LIBSVM 2.6 [4] because it includes a reliable SVM
variant that can output classification probability [21]. With
the probability, SVM can return a ranked list of potential cus-
tomers. Also, by adjusting the threshold, at least we will
have some customers predicted positive.

Though LIBSVM can reduce the impact of imbalanced data
for SVM, its performance is barely better than shopping fre-
quency. We altered the ratio of positive and negative exam-
ples in the training data and found that training data with
a higher ratio tended to help improving the performance of
LIBSVM. This led to the idea that we may applyboost-
ing [17], a well-known technique in machine learning, to
improve the performance by controlled re-sampling. The ba-
sic idea of boosting is to sample a subset of training data to
train a “weak learner,” in this case, SVM. Two parameters
determine how sampling will be performed: the ratio of pos-
itive and negative examples and the classification results by
the classifier trained in the previous iteration. The sampling
iterates a constant number of times to yield as many SVM
classifiers that constitute a classifier ensemble.

We now formally present our Boosting-SVM algorithm. Let
D = {x1, y1, . . . , xN , yN} denote the training examples,
wherexi is the feature vector of customeri andyi indicates
whether the customer bought the given item.Wt(i) is the
probability that(xi, yi) will be selected to train thet-th clas-
sifier ht(x). M is the number of examples that will be se-
lected forht(x) andT is the number of classifiers that will
be trained in total. The Boosting-SVM algorithm is defined
as follows:

To classify a customer, the trained classifiers will
be combined linearly withα1, . . . , αT , the weights of



Algorithm 1 Boosting-SVM

1: Initialize D = {x1, y1, . . . , xN , yN}, T , M , W0 and
t = 1;

2: Let Zt be a normalization constant
3: Wt(i) = W0

Zt
if yi = +1, (positive examples)

4: Wt(i) = 1
Zt

if yi = −1; (negative examples)
5: while t ≤ T do
6: Trainht(x) usingD sampled according toWt;
7: Calculateαt for ht(x) based onD;
8: Calculateerr for ht(x) based onD; (error rate)
9: Wt+1(i) = Wt(i)

Zt+1
exp(−(1 − err)), if ht(xi) = yi;

(correctly classified cases)
10: Wt+1(i) = Wt(i)

Zt+1
exp(1 − err), if ht(xi) 6= yi; (in-

correctly classified cases)
11: t = t + 1;
12: end while
13: Return{h1, α1, . . . , hT , αT };

h1(x), . . . , hT (x), respectively. That is, the probability that
customeri will buy the item is estimated as:

P (yi = +1) =
∑

t

αtP (ht(xi) = +1). (1)

There are many possible ways to calculate the weightsαt.
We have tried 3 methods to calculate the weights and varied
constantW0 to adjust the initial sampling probability. This
yields different variants of Algorithm 1 so that we can em-
pirically determine their impact on the performance.

EXPERIMENTAL RESULTS

This section reports the experimental evaluation of our item-
triggered recommendation approach. We randomly selected
15,000 customers from Ta-Feng data set to train the recom-
menders and a disjoint set of 1,000 customers as the test set.
There areF = 2, 012 product subclasses in the Ta-Feng
transaction database. They constitute the items in our rec-
ommendation task. For a selected item, we converted the
records of customeri in the transaction database into the
form (xi, yi). The shopping records of the selected item
were only used to assignyi, and omitted when we generated
xi. Eachxi is a feature vector of lengthF andxi(j), thej-th
feature, is one if the customer has bought itemj within four
months and zero otherwise.

For each item, we applied the following variants of SVM and
the boosting algorithms to produce the ranked lists.

DEFAULT : This is the trivial algorithm that outputs a cus-
tomer list sorted by the shopping frequency of each cus-
tomer. Basically, if a customer comes more often, the
prior probability that the customer will purchase a cold
seller is higher. Note that this algorithm generates the
same customer list for any item. The performance of
DEFAULT is treated as the baseline of a qualified rec-
ommendation algorithm.

SVM15000 : SVM is trained by all the training data. This
algorithm represents the strategy that we do not con-
sider the rare class problem.

P+SVM : SVM is trained by all the positive examples and
randomly selected negative examples, where the num-
ber of negative examples is twice as many as the posi-
tive ones. In other words, P+SVM will use only 2.1%
to 8.1% of the training examples, but the distribution
of positive and negative examples is different from the
original training data set. This algorithm represents an-
other strategy: we balance the positive/negative ratio
and train a single classifier to rank customers.

U+SVM : This algorithm is the same as P+SVM except that
the sample distribution is uniform. Therefore, the train-
ing examples of U+SVM are a subset of the original
training data set with the same imbalanced distribution
of positive and negative examples.

U+E, U+U : These two are the instantiations of the
Boosting-SVM algorithm as defined in Algorithm 1
with uniform initial sampling probability (i.e.,W0 =
1 in Algorithm 1) for the whole training data set.
In addition, the weight of a classifier is calcu-
lated differently. U+E calculates the weights us-
ing 1/2 ln(Accuracy/Error Rate), the Adaboost’s for-
mula [18], and U+U uses uniform weights for all clas-
sifiers.

U+ROC : This algorithm uses the same initialization of the
sample distribution as U+E and U+U, but calculates the
weights using the AUC scores of the classifiers against
training data.

P+E, P+U, P+ROC : These three algorithms assign a high
sampling probability for positive examples. More
specifically, we setW0 = 100 in Algorithm 1. Their
weight calculation methods are the same as U+E, U+U
and U+ROC, respectively.

We divided the cold seller items into four sets according to
the number of customers who have purchased them in the
training data: (A) 100–149, (B) 150–199, (C) 200–299 and
(D) 300–399. Since there are a total of 15,000 customers,
the corresponding percentages of buyers range from 0.7% to
2.7%. There are 120 items in the item set (A), 77 in (B), 88
in (C) and 59 in (D). Table 1 reports the experimental results
of the algorithms for each of the item sets. The performance
is measured by the average AUC scores. The results show
that all algorithms outperform DEFAULT except U+SVM,
which used less than 8.1% of the training examples. Since
we fetched the positive and negative examples with the same
probability, U+SVM is trained by a small and imbalanced
data set with the same ratio of positive and negative exam-
ples. For SVM15000, we used the whole data set for training
and obtained larger AUC scores. This shows that LIBSVM



Table 1: Average AUC scores of the nine approaches in the four unsought item classes. Best results in a data set are bolded.
Data set DEFAULT SVM15000 U+SVM P+SVM U+U U+E U+ROC P+U P+E P+ROC

100–149 0.609 0.645 0.531 0.694 0.638 0.638 0.657 0.757 0.757 0.758
150–199 0.612 0.639 0.540 0.676 0.666 0.666 0.681 0.756 0.757 0.757
200–299 0.613 0.633 0.581 0.691 0.726 0.726 0.731 0.763 0.763 0.763
300–399 0.616 0.641 0.611 0.690 0.728 0.728 0.729 0.753 0.752 0.753

can outperform DEFAULT when the training data set is suf-
ficiently large.

Then, we discuss the influence of imbalanced positive and
negative examples. SVM15000 and P+SVM apply the same
learning and predicting algorithms. The only difference is
that P+SVM used only a small portion of the negative exam-
ples. The whole training data size for P+SVM is the same as
U+SVM. From the experimental results, we can see that the
AUC scores of P+SVM are larger than U+SVM and aver-
agely about 0.06 more than those of SVM15000. The results
show that using a small but more balanced data set is better
than using a large but extremely imbalanced data set.

The experimental results also show that adopting ensembles
of classifiers can enhance the performance of weak classi-
fiers. For U+ROC, U+E, and U+U, the classifier learned
in the first iteration is the same as the classifier learned by
U+SVM. After several iterations, the weights of positive ex-
amples will be increased so that the subsequent data sets
will become more balanced and therefore, U+ROC, U+E,
and U+U can outperform U+SVM. P+ROC, P+E, and P+U
perform better than U+ROC, U+E, and U+U because their
initial training data set is more balanced. Consequently, the
best results for all item sets are produced by P+ROC, P+E,
and P+U, which improve from DEFAULT by 25% in terms
of the AUC scores.

The ROC curve allows us to see how many buyers will be
identified by different algorithms from their corresponding
recall scores. Figure 2 shows the averaged ROC curves of
DEFAULT and P+ROC for the items in the item set (A), the
“coldest” among the item sets of the cold sellers. Each curve
consists of 100 data points, representing 100 cutoff points to
divide the customers ranked by the predicted probability that
they will buy the items. Suppose that we are recommend-
ing an item to the customers at the top 10% of the ranked
list. Since the recall values of DEFAULT and P+ROC are
20.9% and 42.7% at that point, respectively, we can expect
that P+ROC will help us identifying twice as many potential
buyers as those by DEFAULT.

With the ranked list of potential customers, marketing staffs
can design a campaign strategy targeting a certain percent-
age of customers at the top of the list. The optimal percent-
age can be determined by maximizing a utility function that
takes into account many factors such as resource available
for the campaign, supply and stock status of the item, etc.
The ranked list can also complement recommendation made
by CF recommenders by recommending more cold sellers to

ROC Curve: Data Set 100 -- 149
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Figure 2: Comparison of the ROC curves of DEFAULT and
P+ROC.

further increase sales.

RELATED WORK

Support Vector Machines

In this paper, we combine SVM and boosting to train the
RS. Originally proposed by Vapnik [20], SVM learns a hy-
perplane to separate positive and negative examples. The hy-
perplane is oriented from the maximal margin between pos-
itive and negative classes so that the risk of misclassification
is minimized.

One of the approaches to the rare class problem for SVM
is sample balancing, hierarchical SVM framework [22]. In
this work, negative examples are divided uniformly and com-
bined with all the positive ones to train a set of SVM classi-
fiers. A top level SVM then takes their classification results
as the input to produce the final classification result. Unlike
their approach, we apply boosting and linear combination to
combine the ensemble of SVM classifiers.

Boosting

Boosting [17] uses re-sampling techniques to learn a set of
classifiers, and linearly combine them to predict the class of
input data. The probability that an example is chosen to train
a classifier is determined by whether its true class can be
correctly predicted or not by the classifier learned in the pre-
vious iteration.

Many boosting methods have been proposed for general or
specific purposes. One of the most well-known algorithm is
AdaBoost [18], which minimizes the error rate of the whole



training data set without imposing any restriction to the train-
ing data. When the training data is imbalanced, AdaUBoost,
a variant of AdaBoost, suggests that minority examples be
initialized with higher weights and lower updating rate when
they can be correctly classified [10, 12]. DataBoost-IM, an-
other method to deal with the rare class problem, is to syn-
thesize more positive examples using the previously learned
classifiers [6]. Currently, we adopt the method similar to
AdaUBoost to initialize weights of training examples.

CONCLUSION

We have presented our item-triggered recommendation ap-
proach that predicts customer lists for cold sellers. Each
customer list contains customers sorted by their probabil-
ity to purchase the corresponding item. We believe that
item-triggered recommendation can complement CF-based
customer-triggered recommendation by recommending cold
sellers to further increase sales. For cold sellers, we will need
to deal with the rare class problem to train the RS. Experi-
mental results show that our approach, combination of SVM
and boosting, seems promising for this problem. From the
experimental results, we conclude that in terms of the AUC
scores, (1) SVM outperforms shopping frequency; (2) using
balanced positive and negative examples is better than us-
ing imbalanced ones for SVM; (3) SVM ensembles perform
better than the variants with a single SVM.

Our future work including three issues: To further enhance
the training algorithm for cold seller recommendation. To
include other information such as demographical data to im-
prove the recommendation. To identify the similar or relative
items then re-use training models between them.
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