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Introduction

Our work is based on the premise that analysis of the
connections exploited by a recommender algorithm can
provide insight into the algorithm that could be useful to
predict its performance in a fielded system. We use the
jumping connections model defined by Mirzaet al. [6],
which describes the recommendation process in terms
of graphs. Here we discuss our work that has come out
of trying to understand algorithm behavior in terms of
these graphs. We start by describing a natural extension
of the jumping connections model of Mirzaet al., and
then discuss observations that have come from our stud-
ies, and the directions in which we are going.

Jumping Connections Revisited

Mirza et al. define a model that describes algorithms
based on user-similarity, such as the nearest neighbor
algorithms described by Herlockeret al. [2]. The rat-
ings data correspond to a directed, weighted, bipartite
graph called therating graph in which vertices are users
and items, and arcs are the ratings. Fig. 1 shows the sub-
graph of a rating graph involved in computing a nearest
neighbor prediction of itema for userp. A social net-
work is formed the ratings by using the users as vertices,
and using a similarity measure (and possibly filtered by
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a threshold) to determine the edges. Mirzaet al. use
commonality of ratings to define ahammockmeasure
of similarity where a threshold can be used to indicate
the minimum number of ratings that must be common.
The recommendergraph is formed by adding the rat-
ings back into the social network, and is the space in
which predictions are computed. Fig. 2 shows the rec-
ommender graph for the neighborhood in Fig. 1.

Sarwaret al. [8] introduceitem-basednearest neighbor
algorithms, which in the graph model is just a dual con-
struction. The item-based analogue to the social net-
work is formed by using the dual similarity relationship
between items, which forms anartifact network. The ar-
tifact network can be extended to a (item-based) recom-
mender graph by adding the ratings as shown in Fig. 3.

Observations

Our work coming out of the experiments reported by
Mirza et al. has dealt with analysis of the social and
artificial networks, and trying to relate graph structure
to algorithm performance. There are three key points
to our work so far: (1) ignoring ratings is not useful in
studying algorithms that employ them, (2) there is some
significance of the graph structure to accuracy, but (3)
what that influence is, is not yet clear.

Ratings change everything. The experiments de-
scribed in Mirzaet al. [6] showed that there is a place
for studying recommendation based on commonality of
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Figure 1: Subgraph of rating graph for prediction of
itema for userp.
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Figure 2: Subgraph of user-based recommender graph
for prediction of itema for userp.

ratings. In the case of movies, we know that a few
users tend to rate a lot of movies, so in a user-based
algorithm, these users play an important role in form-
ing the social network by making it possible for users
with relatively few ratings to get recommendations (see
the results on the minimum rating constraint in Mirzaet
al. [6]). Looking at commonality therefore allows us
to understand how what people rate is important. How-
ever, if we look at the properties of the graphs induced
by commonality and those induced by similarity mea-
sures based on the ratings, we see that the ratings change
everything.

Just to illustrate the point, consider the plots of degree
correlation for the social network based on commonal-
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Figure 3: Subgraph of and item-based recommender
graph for prediction of itema for userp.

ity and the social network based on the Pearson r cor-
relation shown in Fig. 4 and Fig. 5. Degree correlation
measures the similarity of the degrees of adjacent ver-
tices [7]. We should first caution that thex-axis in these
plots are different, and so the comparison is slightly dan-
gerous (which is part of the point). Both plots show
the effects of filtering the edges of the graph by in-
creasing a threshold (minimum items in common, and
minimum correlation). The figure shows that the edges
in the commonality-based social network are only be-
tween vertices of dissimilar degree, which suggests that
users who rate many movies are serving as hubs for
users who have not rated many movies. The plot for
the Pearson similarity network, on the other-hand shows
a phase-shift in the connectedness of the graph that indi-
cates most connections between users of dissimilar de-
gree have low correlations.

Neighborhood structure does affect predictive accuracy.
A question that had been posed to us in several settings
was whether we could say something interesting about
predictive accuracy through the graph structure. We first
attempted a “jacknife” study using the 100,000 rating
MovieLens data set, where for each user-rating pair we
cut out a user’s rating of an item and then predicted
the rating. The results were inconclusive, so we took a
different approach, which led to Srinivas Vemuri’s the-
sis [9].

The approach in this case was to introduce a structural
filter on the neighborhood and then measure the affect
in terms of predictive accuracy. The filters applied were
basically the requirement that two neighbors of the user
are only kept if they are neighbors of each other — thus
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Figure 4: Plots of degree correlations for hammock
social network (based on commonality) of MovieLens
100,000 rating data set.

forming a triangle. Vemuri was able to demonstrate an
improvement in predictive accuracy (see Fig. 6), but at
the price of loss of coverage. However, he also defined
an approach that reweights the neighbors based on their
involvement in triangles that produces similar results
without the loss of coverage.
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Figure 5: Plots of degree correlations for Pearson social
network of MovieLens 100,000 rating data set.

Good neighborhoods don’t always have good structure.
The use of the triangular filter is based on the assump-
tion that having better connected neighbors necessarily
leads to better predictions, or, at least, eliminates the
bad ones. However, further analysis of the results of
applying the filters shows that the filters are somewhat
indiscriminate, and make some predictions better, some
worse, some impossible, and have no affect on the ma-
jority of predictions. Fig. 7 shows a typical configu-
ration (although smaller than most) of a neighborhood
affected by the triangle filters. In some cases, the loss
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Figure 6: MAE versus neighborhood size for top-N
user-based Pearson algorithm with and without triangles
for 1 million rating MovieLens data set.

of the neighbor not involved in a triangle improves ac-
curacy and in others makes it worse. The reason that the
overall predictive accuracy improves is that the number
of bad predictions lost exceeds the number of good pre-
dictions made worse or lost. However, the number of
predictions changed is small (1% or less), unless a high
threshold is used to define the triangles.
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Figure 7: Typical neighborhood for a prediction affected
by triangle filters.

Directions

The following describes work that is ongoing following
the observations described above.



Recommendation Metrics

In considering the outcome of Vemuri’s work on filter-
ing neighborhoods, another question arose concerning
whether the improvement in mean absolute error was
significant. In particular, the issue of whether users
would notice the minor improvement was raised. Of
course, the problem with predictive accuracy as a met-
ric of recommendation is that it has little to do with the
way in which recommendations are typically presented.
A user is presented a top-N list of items in decreasing
order by prediction, and, in this setting, an error in pre-
diction is only significant if it is noticeable by the user
(either before or after the fact). Therefore, we are look-
ing at recommendation metrics in terms of observability
of errors by a user.

In looking at recommendation list metrics, we assume
that we are measuring error over a test set of items that
the user has rated (or ranked). Therefore, we can form
a list of the user’s ratings for these items, ordered by
the prediction of the algorithm for each item. For in-
stance, if the user rated five items 5, 5, 4, 3, 1, 1 and
the algorithm predicted that they would be rated 3, 4,
4, 5, 2, 3, then we would consider the list 3, 5, 4, 5, 1,
1. A metric then measures the cost of sorting the list
so that the ratings are ordered properly. The simplest
metric is the count of the number of inversions, which
is the cost of performing a bubblesort on the list. This
is not a novel approach, since inversions are the basis
of Kendall’s tau, however, it matches the intuition be-
hind comparing top-N lists. (Faginet al. have shown
Kendall’s tau [4] is equivalent in a meaningful way to
other reasonable choices by which top-N lists could be
compared [1].) Vemuri [9] has also suggested counting
the number of inversions between sorted runs of ratings
as an alternative.

The problem of comparing comparing recommendation
lists is much more complex than comparing the order,
because the lists are presented in pages, and a user will
also only view a prefix of the recommendation list [5, 3]
Therefore, we might also consider factors such as the
number of items presented per page, the total number
of items (or pages) viewed by the user, and the user’s
tolerance for errors. In its simplest form, user tolerance
can be modeled as an equivalence between rating values,
since this would hide short swaps. However, a user’s
tolerance for longer swaps might be affected by whether
they cross a page, or whether they include or exclude
an item from the prefix of the list. It is not clear the ex-
tent to which these might be factors that are important to
consider in the metric, and we are working on defining a

user study that might help understand what a user might
be able to observe (or care about).

Local Health

All of this work has led us in the direction of study-
ing the “health” of a recommender system, and to begin
with the local health of the system. We consider the
local health of a recommender system as any property
of the system that could affect the user’s perception of
the system, andobservabilityby the user is a key prop-
erty. Our goal is to define the user observable properties
of recommender systems, and to characterize the under-
lying properties of the algorithm and data that lead to
pathologies observable by the user. We concentrate on
user observable properties of the recommendation list,
including list accuracy, list stability, and variability of
new items. This is the topic of Sun-mi Kim’s research.

We have started by exploring the issue of what makes a
good neighborhood from the standpoint of recommen-
dation list error. To do this, we have identified users
who have sufficient diversity in their use of ratings (an
entropy value of 2 or more) and have either good or bad
inversion rates, and have been studying their neighbor-
hoods. We are starting with the obvious pathologies of
the neighborhoods that lead to errors, and hope to find
graph properties that we can use as measures of neigh-
borhood quality.

For the other properties, we are following a similar ap-
proach to find alternative graph-based metrics that are
descriptive. As an example, for novelty, we can define
bridge lengthmetrics based on the number of ratings
that are required to add certain items to the recommen-
dation list by bridging to a new neighbor who has rated
the items. In some sense this is likepotentialcoverage;
coverage being a measure of how many of the total items
can be recommended to the user [3].

Conclusion

Overall, our work is part of a larger agenda to be able to
characterize the healthy properties of recommender sys-
tems. We believe that the graph models provide a useful
framework for this study by focusing attention on the
connections that are used in the computations. Both the
work of Mirza [6] and Vemuri [9] already support this
contention. (We should acknowledge that the termrec-
ommender system healthcame to us from Joe Konstan.)
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